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Rubber toughened Styrenics represent an interesting model system for a blend containing 
a soft second phase in the form of dispersed spherical particles. The elastic properties of 
such a system have been widely examined in the past, both from experimental and 
theoretical viewpoints, however some questions remain unanswered. In this work an 
attempt is made to rationalize the field via the proposal of pertinent experimentation 
followed by a short review and the application of a convincing theoretical model. The elastic 
properties of rubber toughened Styrenics appear to be reproduced by a diluted model for 
spherical inclusions, in which the lower bound condition has to be used to describe the 
elastic properties of the second phase particles. Also, the more phenomenological Nielsen 
equation closely reproduces the experimental data. 
These results suggest that the role of stress intensification around the particles in rubber 
toughened Styrenics has to be reconsidered. 

1. Introduction 
Rubber toughened Styrenics (RTS), i.e. high impact 
polystyrene (HIPS) and acrylonitrile-styrene- 
butadiene (ABS), have great practical relevance, being 
used in a large variety of everyday applications 
(packaging, refrigerators, automotive, etc.). Further- 
more they represent interesting and relatively simple 
model systems for the rubber toughening of brittle 
polymeric matrices. As a result, the interest in their 
mechanical properties is vast, both from the practical 
and fundamental points of view. 

Concerning the elastic moduli at room temperature, 
an important experimental study goes back to the 
early seventies: Cigna [1] demonstrated that the shear 
moduli of a series of HIPS did not only depend on the 
rubbery content, but were influenced by a more 
complex parameter, the rubbery phase volume fraaion, 
qb, that accounted for the geometrical and structural 
complexities of the rubbery particles. The work of 
Cigna represented a crucial advance in the 
understanding of RTS and has been referenced in 
malay papers and used in daily characterization 
routines for the last twenty years. 

Recently, however, some details in the Cigna work 
have been criticized by one of us [-2, 3]: namely the 
way of measuring ~. Maestrini et al. [2, 3] have 
proposed a stereological method, applied to the 
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analysis of transmission electron microscopy (TEM) 
pictures, that overcomes the drawbacks inherent in 
phase separation techniques. This method has been 
subsequently confirmed by Anzaldi et al. [4] by means 
of physico-chemical considerations and an 
experimental modification of the routine phase 
separation measurements. 

Following the stereological method described in 
references [2 and 3] the elastic characteristics of RTS 
show an observable dependence on the morphology 
and structure of the second phase which was not 
discussed in the work of Cigna. This fact is however 
not completely new and has been reported, for 
example, for rubber toughened polymethyl 
metacrylate (PMMA) [5], in which the determination 
of (~ does not involve the same difficulties present for 
HIPS. However, to our knowledge, no convincing 
rationalization or detailed analysis of these 
experimental data has been proposed. 

Therefore, the aim of this work is: 
(a) to present an accurate structural and morphol- 

ogical characterization and the corresponding elastic 
data for a large set of RTSs (HIPSs and ABSs); and 

(b) to discuss them in order to gain a deeper 
understanding of the role played by the second phase 
structure and morphology on the mechanical 
properties. 
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Figure 1 TEM picture of a bulk polymerized HIPS containing 
composite particles. 

Figure 3 TEM picture of an emulsion polymerized ABS containing 
bulk particles. 

Figure2 TEM picture of a suspension polymerized HIPS 
containing core-shell particles. 

Figure 4 TEM picture of a bulk polymerized ABS containing 
composite particles. 

2. Experimental procedure 
2.1. M a t e r i a l s  
HIPS is mainly produced by the well documented bulk 
polymerization technique [6-8]. The formation of the 
rubbery phase ordinarily follows the phase inversion 
stage and gives rise to a population of well dispersed, 
more or less spherical particles often having 
a composite structure similar to that of a salami 
sausage slice. The particles are generally composed of 
polybutadiene (PB), styrene-butadiene graft and/or 
block copolymer and of polystyrenic (PS) 
sub-inclusion: the particle size and number and, also 
the rubbery phase volume fraction, depend on several 
process parameters (see Fig. 1 for an example of bulk 
polymerized HIPS with composite particles). 

HIPS can also be produced by the suspension 
polymerization technique [8], modified by the 
presence of PS-PB copolymer in the initial solution. 
In this way it is easy to obtain spherical particles with 
core-shell structures, i.e. composed of a core of PS and 
an outer shell of PB (see Fig. 2 for an example of 
suspension polymerized HIPS with core-shell 
particles). 

ABS is traditionally produced by the emulsion 
polymerization technique [6, 7] which can be 
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summarized as follows. (a) The rubbery phase is 
prepared in the form of latex: (b) PB bulk particles are 
then dispersed in an aqueous medium; (c) 
styrene-acrylonitrile is then copolymerized in the 
presence of the rubber latex in order to obtain 
a grafted shell covering the particles; the obtained 
grafted second phase is then dispersed in a matrix of 
poly(styrene-r-acrylonitrile) (SAN) (see Fig. 3 for an 
example of emulsion polymerized ABS with bulk 
rubber particles). 

Recently the bulk polymerization technique has 
been adopted for ABS production [9]: in this case the 
material obtained shows a second phase having 
a structure very similar to that of the composite HIPS 
particles polymerized by the same method (see Fig. 4 
for an example of bulk polymerized ABS with 
composite particles). 

In the present work we examined sets of materials 
for each described polymerization technique: Table I 
contains the data of interest. Much of this data has 
already been presented in previous publications in 
which the focus was on properties other than the 
elastic properties: in these cases Table I indicates the 
original reference. 



T A B LE I Materials indicated with the letter h are HIPS, with the letter a are ABS. The meaning of the symbols is discussed in the text, we 
remember here that ~ is the second phase volume fraction of the whole material, while c represents the volume fraction of the rigid phase in 
the particles. (*): The materials are discussed in the reference, but the elastic data are presented for the first time here. 

Material Particle Reference d~ (R 1 ) 9 c E g 
structure gm MPa MPa 

hl 
h2 
h3 
h4 
h5 
h6 
h7 
h8 
h9 
hl0 
hl l  
h12 
h13 
h14 
h15 
h16 
h17 
h18 
h19 
h20 
h21 
h22 
h23 
h24 
al 
a2 
a3 
a4 
a5 
a6 
a7 
a8 
a9 
al0 
a l l  
a12 
a13 
a14 
a15 
a16 
a17 
a18 
a19 
a20 
PS 
SAN 

composite 
composite 
composite 
composite 
composite 
composite 
composite 
composite 
composite 
composite 
composite 
core-shell 
core-shell 
core-shell 
core-shell 
cor~shell 
core-shell 
core-shell 
core shell 
core-shell 
cor~shell 
core--shell 
core-shell 
core-shell 
bulk 
bulk 
bulk 
bulk 
bulk 
bulk 
bulk 
bulk 
composite 
composite 
composite 
composite 
composite 
composite 
composite 
composite 
composite 
composite 
composate 
composite 

2 0.069 0.24 0.02 0.76 2849 1163 
2 O. 133 0.24 0.03 0.74 2500 1022 
2 0.193 0.24 0.05 0.74 2177 857 
2 0.249 0.24 0.07 0.73 1886 736 

0.050 O. 16 0.02 0.69 3053 1235 
0.100 0.16 0.03 0.69 2635 1108 
0.200 0.16 0.06 0.69 2060 854 
0.050 0.37 0.01 0.79 3051 1227 
O. 100 0.37 0.02 0.79 2648 1086 
0.200 0.37 0.04 0.79 2162 830 
0.300 0.37 0.06 0.79 1564 660 

2 0.031 0.11 0.02 0.47 2945 1256 
2 0.054 0.11 0.03 0.47 2763 1127 
2 0.079 O. 11 0.04 0.47 2555 1049 
2 O. 103 O. 11 0.05 0.47 2376 934 

27 0.138 0.08 0.09 0.38 2007 881 
27 0.157 0.09 0.08 0.46 1853 774 
27 0.172 0.09 0.09 0.48 
27 0.153 0.09 0.09 0.41 2105 819 
27 0.189 0.10 0.09 0.53 1837 728 
27 O. 173 O. 10 0.09 0.50 2024 791 
27 0.175 0.10 0.10 0.45 2053 777 

0.050 0.10 0.03 0.49 2885 1148 
O. 1 O0 0.10 0.05 0.49 2394 984 

11 (*) 0.05 0.05 0.00 3443 
11 (*) 0.05 0.10 0.00 2809 
11 (*) 0.05 0.15 0.00 2602 
11 (*) 0.05 0.20 0.00 2311 
11 (*) 0.09 0.05 0.00 3490 
11 (*) 0.09 0.10 0.00 3334 
11 (*) 0.09 0.15 0.00 2898 
11 (*) 0.09 0.20 0.00 2431 
11 (*) 0.045 0.13 0.03 0.37 3577 
11 (*) 0.091 0.13 0.06 0.37 2860 
11 (*) 0.136 0.13 I).09 0.37 2831 
11 (*) 0.174 0.13 0.11 0.37 2563 
11 (*) 0.064 0.21 0.03 0.56 3440 
11 (*) 0.127 0.21 0.06 0.56 3111 
11 (*) 0.191 0.21 0.08 0.56 2723 
11 (*) 0.244 0.21 0.11 0.56 2423 
11 (*) 0.102 0.68 0.03 0.73 3331 
11 (*) 0.205 0.68 0.06 0.73 2402 
11 (*) 0.307 0.68 0.08 0.73 2153 
11 (*) 0.402 0.68 0.11 0.73 1857 

3351 1351 
3705 1400 

2.2. Structural and morphological 
characterization 

In  o r d e r  to  rea l ize  a ve ry  prec ise  a n d  q u a n t i t a t i v e l y  

useful  s t ruc tu ra l  c h a r a c t e r i z a t i o n ,  an  a c c u r a t e  

d e t e r m i n a t i o n  of  the  par t i c le  size d i s t r i bu t i on  a n d  of  

the  r u b b e r y  p h a s e  v o l u m e  f rac t ion  is necessary .  T h e  

o r d i n a r y  m e t h o d  of  m e a s u r i n g  these  two  key  

p a r a m e t e r s  is, in fact, sub jec t  to  h e a v y  c r i t i c i sm a n d  

gives  r ise to  d a t a  t ha t  c a n n o t  be  c o n s i d e r e d  real is t ic  

[2 ,3 ] .  F o r  this reason ,  we h a v e  a d o p t e d  the  

s t e reo log ica l  a p p r o a c h  desc r ibed  in de ta i l  in 

references  [-2 a n d  3]. Th is  cons is t s  o f  ana lys ing  

t r a n s m i s s i o n  e l ec t ron  m i c r o s c o p y  ( T E M )  pic tures ,  

o b t a i n e d  by the  s t a n d a r d  t e chn iques  r e p o r t e d  in 

references  [10],  f r o m  m a t e r i a l  slices h a v i n g  dif ferent  

th ickness  a n d  t h e n  r e c o n s t r u c t i n g  the  b u l k  s i tua t ion .  

W e  used  the  fo l l owing  e q u a t i o n s  [3]:  

(r 1) = re(R2) + 2t(R1) (1) 

4 ( R  1) + 2t 

4 ( R  3) + 3t(R 2) 
(r ~) = (2) 

6 ( R  ~) + 3t 

4<R3> + 3t(R 2) 
qbapp = 4<R3 > ~ (3) 

whe re  the  ( r  i )  r ep resen t s  the  i - th  m o m e n t  of  the  

pa r t i c l e  r ad ius  d i s t r i b u t i o n  in the  T E M  images ,  ( R  j ) 

the  j - t h  m o m e n t  o f  the  real  pa r t i c l e  d i s t r i b u t i o n  in the  
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bulk, t the observed section thickness, (~app the 
apparent second phase volume fraction in the TEM 
images and ~ the real second phase volume fraction. 
Equations 1-3, which produce an over-determined 
system when one considers more than one thickness, 
have been solved using a simple algorithm, which is 
discussed in reference [11] and consists of the 
minimization of the maximum component of 
a normalized linear error function containing all the 
parameters (R j )  and qb. The results of such 
a characterization are displayed in Table 1. 

In order to assess the elastic properties obtained 
with the mathematical models that we will discuss in 
the following sections it is important to also know the 
amount of rubber in the material, since from this the 
amount of rubber in the dispersed phase can be 
computed. A practical and precise way to do that is by 
means of titration methods. The PB percentage values, 
indicated by the greek letter 9, are displayed in 
Table I. In a previous work [11] it has been shown 
that, for ABS produced by emulsion polymerization, 
the values of p can be assumed to well represent the 
second phase volume fraction, thus, for materials of 
that class that are discussed in the present work, only 
one value of p is reported. 

2.3. Elastic properties 
For the HIPSs, both the Young modulus (E) and the 
shear modulus (g) were measured on compression 
moulded specimens using a three-point bending or 
a simple torsion geometry, respectively. Measure- 
ments were performed in the dynamic regime with 
sinusoidal strain pulses at a frequency of 1 Hz with the 
maximum strain restricted to the linear viscoelastic 
zone, i.e. < 1%. 

For the ABSs only E was measured, using the same 
measurement technique. 

Two reference samples of PS and SAN have also 
been investigated, whilst the PB data were obtained 
from the literature (from references [12 and 13]: 
gps/~.LpB = 1000 and VpB = 0.49982). 

3. Results and discussion 
The problem of computing the elastic properties of 
a particular composite material consists of two steps: 

(i) the determination of the effective elastic moduli 
of the inclusions, considered as a composite 
themselves; and (ii) the calculation of the global 
properties of the materials having inclusions with the 
characteristics calculated in Step (i). 

We will start our consideration with this last point. 
For this task a great deal of literature is accessible, 

both on the general theme of particulate composites 
and on the more specific topic of HIPS and ABS 
materials [14-20]. An exhaustive review of this data is 
beyond the scope of this paper and we will simply limit 
our discussion to areas of direct interest to this 
work. The simplest equations that can be introduced 
consider the upper and lower bounds of the problem, 
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i . e s  

PE = cPi q- ( 1 -  c)P m (4) 

PiPm 
PE = (5) 

cP m + (1 - c) Pi 

where Pro, P~ and PE represent the elastic moduli of the 
matrix, of the included phase and of the resulting 
composite material, respectively, and c is the volume 
fraction of the inclusions. These equations, however, 
have been largely experimentally disproved. This fact 
resulted in the generation of a number of 
semi-phenomenological models. For instance, Boyce 
et al. [21J chose the Chow [22] model in order to 
compute the effective elastic properties of HIPS with 
particle structures similar to that of the materials we 
are investigating. The Chow model, which describes 
the general case of elliptical inclusions, reduces to the 
Kerner equations [15] when spherical particles are 
considered. The Kerner equations have been 
demonstrated to contain an unjustified assumption, 
which is to consider t h a t  the inclusion is in 
a homogeneous state of simple shear deformation, and 
this assumption is invalid [19,20]. Despite this 
inconsistency, these models have been demonstrated 
to be useful in the ordinary experimental practice. We 
wish then to introduce a phenomenological model that 
we consider to be more comprehensive and stimulating, 
which is represented by the Nielsen equation [18]: 

Pm 1 + A B c  
- ( 6 )  

PE 1 -- B T c  

where the coefficients A, B and T are given by: 

1 
A k - 1 (7) 

B - P m / P i - -  1 (8) 
Pm/Pi + A 

T = I  + ( lZcmax/ccmax / (9) 

coefficient k appearing in Equation 7 is the The 
Einstein coefficient and has in our case, due to good 
adhesion between PS and the rubbery particles, 
a value of 2.5, which corresponds to a dispersion of 
spheres without slippage; Cm,x represents the 
maximum packing fraction of the dispersed phase, for 
which the more probable values for our HIPSs and 
ABSs are 0.50, characterizing a random loose packing 
of equal spheres [18J. 

The same problem can also be treated from a more 
rigorous point of view. The simplest way is to consider 
that the dispersed phase is in a diluted state, i.e. the 
case in which the interactions between the particles 
can be neglected, no matter what the size of the 
representative volume element in which the 
computations are done. It is possible to prove that in 
the diluted case: 

k E = k m ~- ( ( k  i - kin)c~(1 -[- ( k  i - k~)/(km + ~gm))) 

( lO)  

~t~ 1 5 ( 1  - Vm)(1  - ~,/~m)C 
- -  1 ( 1 1 )  

]~m 7 - -  5V  m -~ 2(4 - 5 V m ) g i / g  m 



where k, g and v are the bulk modulus, the shear 
modulus and the Poisson ratio respectively, and the 
subscripts E, m and i refer to the global material, to 
the matrix and to the inclusions. The result was 
apparently first derived by Dewey [14], based on the 
elastic solution given by Goodier [23]. 

Furthermore, in order to overcome the restriction 
of high dilution, we can adopt the so-called three phase 
method (TPM) [19,20] for the composite spheres 
model [17], whose derivation is based only on 
a self-evident energetic hypotheses. The TPM 
produces the equations: 

k E - k m c 

ki - -  ~m 1 -q- F(I -- C)(k i -- km)/(k m q- 4. rn )  ] 
(12) 

+ 2B gE \~-l'm// ~mm + C = 0 (13) 

where 

A = 8(t't~- i -  1 ) ( 4  -- 5Vm)ql c10/3 

+ 4(7 -- 10Vm)ll2YI3 

B = - 

C7/3 

+ 8V2m)rl2c 

2 (  g i -  \~.l m 1) (1 - 5v~)qlcl~ 

q- 3/2(15Vm -- 7)T'[2rI3 

C -- 4(g~--\~tm 1)(5V~-- 7)q lC 1~ 

- - 2 F 6 3  ( ~ t i - - L  \~m 1/~12 "q- Th]]31 c7/3 

--252 ( ~ - ~ -  1)rlzC s/3 

-- (7 - -  5 V m ) q 2 ] 1 3  

with 

("i,m ) = (49 -- 50ViVm) - -  - 1 -~- 35 gi vi( - -  2Vm)  nl  
gm 

+ 35(2vi - vm) 

113 = g i ( 8  -- 10Vm) -}- (7 -- 5Vm) 
~Lm 

The TPM has some limitations since it is derived from 
a composite sphere model [17], it applies strictly to 
the case in which the material is formed by 
a combination of spherical filler particles having 
different sizes. Nonetheless the validity of the model 
can still be good, with the limitation that the 
inclusions volume fraction should be below the 
maximum volume fraction of the particles in the 
aggregate form. Experimental data show, in fact, that 
the composite sphere model gives a very close 
prediction of the measured effective uniaxial modulus 
up to a volume fraction of about 50%, also if the size 
of the included spheres does vary slightly [24]. It 
should also be pointed out that the composite spheres 
model is representative of the behaviour of a wide 
variety of composite systems, not just those with 
exactly spherical particles. As long as the particles are 
not greatly different in shape from a spherical 
configuration, as in our case, the model would be 
expected to give a reasonable prediction. The 
flexibility of the model is due to the fact that the 
effective properties relate to global averages of stress 
and strain, which themselves are more dependent on 
the volume fractions of the various phases, rather than 
to the fine details of the local geometry [20]] 

Fig. 5 is a plot of the shear modulus, g, computed 
according to the different models discussed up to now, 
vs. the second phase volume fraction, qb, for an ideal 
two phase system: the computational details are 
reported in the figure caption. 

For the HIPS and ABS structure, we are confident 
that in the determination of the global elastic 
properties, the volume fraction c should be very well 
related to the values of ~ measured in the way 
described previously. The matrix is obviously 
composed of PS or SAN, but we still lack knowledge 
of the effective elastic moduli of the composite 
particles. 

We are now facing the first problem mentioned 
previously. In this case the composite can be assumed 
to be formed by a matrix of PB that can contain 
a dispersion of PS or SAN having different structures. 
In general we can assume that, for the particles, the 
volume fraction of the dispersed rigid phase (PS or 
SAN) can be estimated as: 

q b - p  
c - (14) + 

Furthermore, we are confident that the elastic moduli 
of the particles are situated between the two limits 
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Figure 5 Plot of the shear modulus, ~t vs. the second phase volume 
fraction, 9, according to the three theoretical models considered in 
the text: the Nielsen mode ! (Equations 6-9; dashed line), the diluted 
model (Equations 10, 11, solid line) and the three phase method 
(Equations 12, 13, dotted line). The lines are calculated for a system 
composed by a matrix having gm= 1351 MPa, Em = 3351 MPa 
(corresponding to PS) and spherical inclusions having gl = 3 MPa, 
El = 8 MPa (corresponding to a computation made by me'ms of the 
lower bound Equation 5, for core-shell particles with a core of PS, 
a shell of PB and a core volume fraction of 0.5). 

represented by the lower and upper bounds 
(Equations 4 and 5): it is possible, then, to check the 
validity of the models above described using these 
reference values for the rubbery phase properties 1. 

Figs 6-12 represent plots of the experimental data 
and theoretical curves for the considered classes of 
materials. In the computations we used the known 
formulae: 

9kg 
E - ( 1 5 )  

3 k + g  

3k - 2g 
v - (16) 

2(3k + g) 

From the examination of the figures it is evident that, 
with the sole exception of the core-shell HIPS, the 
elastic behaviour of RTS is well described both by the 
diluted approach (Equations 10 and !1) and the 
Nielsen formula (Equation 6), when the rubbery phase 
properties are computed by means of the lower bound 
equation and/or the undiluted (TPM) approach 
(Equations 12 and 13). 

Core-shell HIPSs present experimental values 
lower than those predicted by the diluted approach 
(Figs 8 and 9): they seem to be quantitatively 
approximated in a better way by the undiluted (TPM) 
approach (Equations 12 and 13), however the shape of 
the experimental data plots does not show the 
curvature typical of the undiluted approach and more 
closely resembles the quasi-linearity exhibited by the 

A 1500 
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Figure 6 Plot of the shear modulus, g vs. the second phase volume 
fraction, dp, for materials from hl to hl l  (HIPS with composite 
particles). In the main graph are displayed: the experimental data 
(0); the theoretical curves obtained following the diluted model 
approach (Equations 10 and 11) in which the elastic characteristics 
of the dispersed phase are computed by means of the upper and 
lower bounds (Equations 4 and 5) ( ) and the TPM model for 
the composite spheres (Equations 12 and 13) ( . . . . . .  ) using a value of 
c of 0.75. In the minor graph (a) the theoretical curves are obtained 
from the Nielsen Equation (Equation 6 in the text). The meaning of 
the symbols and lines is the same as in the main graph. In the minor 
graph (b) the theoretical curves are obtained from the TPM model 
(Equations 12 and 13). The meaning of the symbols and lines is the 
same as in the main graph. 

diluted approach. A possible explanation of this fact 
can be found in the composition of the core-shell 
HIPS, which is more complex than ordinary HIPS, 
containing block-copolymers. It is then possible that 
the elastic values for PS and PB that we used in the 
computationmay not correspond to the real values of 
the matrix and the rubber contained in core-shell 
HIPS. If these values were available and introduced 
into the computations, it is our opinion that core-shell 
HIPS would also have been well described by the 
diluted approach. 

The fact that the second phase properties are always 
well described by the lower bound or by the undiluted 
(TPM) approach, which are similar, can be explained 
by the fact that the rubbery particle, and especially in 
the case of a composite structure, is a dense system in 
which the interactions between the constitutive parts 
cannot be neglected. 

On the other hand it is not obvious why the RTS 
systems could be described by a diluted model up to 
relevant values of ~ (>0.3). I t  is also not 
straightforward to explain the considerable similarity 
between the data produced by the diluted approach 
and the Nielsen formula�9 

The validity of the diluted model up to large values 
of (~ appears, in fact, to be incompatible with classical 
considerations concerning the stress intensification 

1 In the case of ABS with bulk particles produced by emulsion polymerization the SAN sub-inclusions are virtually absent, so the particle 
characteristics can be assumed equal to those of pure PB. It is obvious, then, that the above argument does not apply to this class of materials. 
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Figure 7 Plot of the Youngs modulus, E vs. the second phase 
volume fraction, (~, for materials from hl to hl l  (HIPS with 
composite particles). In the main graph are displayed: the 
experimental data (0); the theoretical curves obtained following the 
diluted model approach (Equations 10 and 11) in which the elastic 
characteristics of the dispersed phase are computed by means of the 
upper and lower bounds (Equations 4 and 5)(  ) and the 
TPM model for the composite spheres (Equations 12 and 13) ( . . . . . .  ) 
using a value of c of 0.75. In the minor graph (a) the theoretical 
curves are obtained from the Nielsen Equation (Equation 6 in the 
text). The meaning of the symbols and lines is the same as in the 
main graph. In the minor graph (b) the theoretical curves are 
obtained fi'om the TPM model (Equations 12 and 13). The meaning 
of the symbols and lines is the same as in the main graph. 
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Figure 9 Plot of the Youngs modulus, E vs. the second phase 
volume fraction, d), for materials from h12 to h24 (HIPS with 
core-shell particles). In the main graph are displayed: the 
experimental data (O); the theoretical curves obtained following the 
diluted model approach (Equations 10 and 11) in which the elastic 
characteristics of the dispersed phase are computed by means of 
the upper and lower bounds (Equations 4 and 5) ( - - )  and the 
TPM model for the composite spheres (Equations 12 and 13) 
( . . . . . .  ) using a value of c of 0.75. In the minor graph (a) the 
theoretical curves are obtained from the Nielsen equation (Equation 
6 in the text). The meaning of the symbols and lines is the same as in 
the main graph. In the minor graph (b) the theoretical curves are 
obtained from the TPM model (Equations 12 and 13). The meaning 
of the symbols and lines is the same as in the main graph. 
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Figure 8 Plot of the shear modulus, g vs. the second phase volume 
fraction, (~, for materials from h12 to h24 (HIPS with core-shell 
particles). In the main graph are displayed: the experimental data 
(0); the theoretical curves obtained following the diluted model 
approach (Equations 10 and 11)in which the elastic characteristics 
of the dispersed phase are computed by means of the upper and 
lower bounds (Equations 4 and 5) ( - - )  and the TPM model for 
the composite spheres (Equations 12 and 13) ( . . . . . .  ) using a value 
of c of 0.47. In the minor graph (a) the theoretical curves are 
obtained from the Nielsen equation (Equation 6 in the text). The 
meaning of the symbols and lines is the same as in the main graph. 
In the minor graph (b) the theoretical curves are obtained from the 
TPM model (Equations 12 and 13). The meaning of the symbols and 
lines is the same as in the main graph. 
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Figure 10 Plot of the Youngs modulus, E vs. the second phase 
volume fraction, ~, for materials from al to a8 (ABS with bulk 
particles). In the main graph are displayed: the experimental data 
(0); the theoretical curve obtained following the diluted model 
approach (Equations 10 and 11) in the text ( ). In the minor 
graph (a) the theoretical curves are obtained from the Nielson 
equation (Equation 6 in the text). The meaning of the symbols and 
lines is the same as in the main graph. In the minor graph (b) the 
theoretical curves are obtained from the TPM model (Equations 12 
and 13). The meaning of the symbols and lines is the same as in the 
main graph. 
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Figure 11 Plot of the Youngs modulus, E vs. the second phase 
volume fraction, dO, for materials from a9 to a20 (ABS with 
composite particles). In the main graph are displayed: the 
experimental data: from a9 to a12 (0), from a13 to a20 (O); the 
theoretical curves obtained following the diluted model approach 
(Equations 10 and 11) in which the elastic characteristics of the 
dispersed phase are computed by means of the upper and lower 
bounds (Equations 4 and 5) ( ) and the TPM model for the 
composite spheres (Equations 12 and 13) ( ...... ) using a value of 
c of 0.37. In the minor graph (a) the theoretical curves are obtained 
from the Nielsen equation (Equation 6 in the text). The meaning of 
the symbols and lines is the same as in the main graph. In the minor 
graph (b) the theoretical curves are obtained from the TPM model 
(Equations 12 and 13). The meaning of the symbols and lines is the 
same as in the main graph. 
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Figure 12 Plot of the Youngs modulus, E vs. the second phase 
volume fraction, dO, for materials from a9 to a20 (ABS with 
composite particles). In the main graph are displayed: the 
experimental data: from a9 to a12 (O), from a13 to a20 (0); the 
theoretical curves obtained following the diluted model approach 
(Equations 10 and 11) in which the elastic characteristics of the 
dispersed phase are computed by means of the upper and lower 
bounds (Equations 4 and 5) ( ) and the TPM model for the 
composite spheres (Equations 12 and 13) ( ...... ) using a value of 
c of 0.64. In the minor graph (a) the theoretical curves are obtained 
from the Nielson equation (Equation 6 in the text). The meaning of 
the symbols and lines is the same as in the main graph. In the minor 
graph (b) the theoretical curves are obtained from the TPM model 
(Equations 12 and 13). The meaning of the symbols and lines is the 
same as in the main graph. 

a round  spherical inclusions. According to Goodie r  
[23], the stress a round  a rubber  particle is amplified to 
a factor of  about  2 and approximately  levels out  to the 
nominal  applied stress at a distance of  about  0.4R 
from the par t ic le-matr ix  interphase, where R is the 
particle radius, which means that  the intensified stress 
fields should quickly overlap when the second phase 
volume fraction increases: the mean  particle distance 
corresponding to a d~ of  0.3 is, in fact, approximately  
a value of  about  0AR. Consequently,  if the elastic data  
obtained by us are to be trusted, one has to conclude 
that  the rubber  particles are not  as effective as stress 
intensifiers: the derivation of  the diluted approach  
equat ions being in open contrast  with the stress fields 
overlapping. 

There are other  experimental evidences that  
suggest that  the stress intensification and overlap 
could be quest ioned in ABS and in core-shell  HIPS :  
namely the fact the yielding stress can be well 
modelled by means of  an extension of the Ishai  and 
Cohen  approach,  which assumes that  no stress 
intensification and no overlapping takes place 
[25-27].  It  is nontheless evident f rom the microscopic 
observat ion that, at least H I P S  composi te  particles, 
are very effective as craze nucleating agents, 
suggesting that  the stress condit ions a round  them are 
surely enhanced [6]. 

Considering these cont radic tory  indications, our  
opinion at the present momen t  is that  a stress 
concentra t ion a round  the particles is present and is 

3 2 5 6  

sufficient to nucleate crazes or other kinds of plastic 
deformation mechanisms, but that it probably falls more 
quickly than is calculated by means of a pure continuum 
mechanics approach and, therefore, that the overlapping 
of the intensified stress fields can be negligible. 

This idea can also provide a possible explanat ion 
for the considerable similarity observed between the 
diluted approach  and the Nielsen equation. The 
considerat ions that  p roduced  the Nielsen equat ion 
were, in reality, of hydrodynamic nature and involved 
only the geometric features of the dispersed phase [18]: 
the Nielsen equation should, then, fail to account for 
overlapping phenomena and closely reproduce only the 
non-interact ing situation, as is the one outlined in 
a more  r igorous way by the diluted approach.  

4. C o n c l u s i o n s  
The differences in the elastic behaviour  of  the studied 
RTS permit the following interpretation: the elastic 
modul i  of these RTS appear  to be well described by 
the diluted model  for spherical inclusions, when the 
second phase elastic properties are computed,  taking 
into account  the internal particle structure, by a lower 
bound  equat ion or  by the three phase model  for the 
composi te  spheres. The phenomenologica l  Nielsen 
equat ion also reproduces the experimental data. 

This fact suggests that  the way to look at the stress 
intensification a round  particles in RTS has possibly to 
be reconsidered. 



Acknowledgements 
CM thanks EniChem for the possibility of performing 
this work in the company's lab in partial fulfillment of 
the requirement for the degree of Docteur 6s Sciences 
Techniques at EPFL. 

References 
1. G. CIGNA, J. Appl. Polym. Sci. 14 (1970) 1781. 
2. C. MAESTRINI ,  M. MERLOTTI ,  M. VIGHI and E. 

M A L A G U T I, Pro& of the European Polymer Federation, 1992, 
Baden Baden, 1992. 

3. ldem. J. Mater. Sci. 27 (1992) 5994. 
4. S. ANZALDI,  L. BONIFACI,  E. MALAGUTI ,  M. VIGHI 

and G. P. RAVANETTI,  J. Mater. Sci. Lett. 33 (94) 1555. 
5. P. A. LOVELL, J. M C D O N A L D ,  D. E. J. SAUNDERS,  

M. N. SHERRATT and R. J. YOUNG,  in Toughened Plastics 
I, edited by C. K. Riew and A. J. Kinloch, American Chemical 
Society, Washington,  1993. 

6, C. B. BUCKNALL,  Toughened Plastics, Applied Science 
Publishers, London,  977. 

7. F. R O D R I G U E Z ,  Principles of Polymer Systems, McGraw 
Hill, Singapore, 1983. 

8. A. ECTHE, Rubber Toughened Plastics, edited by C. K. Riew, 
American Chemical Society, Washington,  1989. 

9. F. BALESTRI,  I. BORGHI,  S. MATARESSE and C. 
MAESTRINI ,  Proc. Joint. Meet. USSR/Italy Polymer 
Science, Leningrad, 1991. 

10. K. KATO, Polym. Eng. Sci. 7 (1967) 38. 

11. G. l?. GIACONI,  L. CASTELLANI,  C. MAESTRINI and T. 
R l C C O, Polymer (submitted). 

12. Y. RICCO, A. P A V A N a n d  F. DANUSSO, Polymer 20 (1979) 
367. 

13. L. BOHN, Angew. Makromol. Chem. 20 (197l) 129. 
14. J .M.  DEWEY, J. Appl. Phys. 18 (1947) 578. 
15. E .H.  KERNER,  Proc. Phys. Soc. 69B (1956) 808. 
16. J . D .  ESHELBY, Proc. Roy. Soc. A241 (1957) 376. 
17. Z. HASHIN, J. Appl. Mech. 29 (1962) 143. 
18. L.E. NIELSEN, Predicting the Properties of Mixtures, Marcel 

Dekker, New York, 1978. 
19. R .M.  CHRISTENSEN and K. H. LO, J. Mech. Phys. Solids 

27 (1979) 4. 
20. R. M. CHRISTENSEN,  Mechanics of Composite Materials, 

John Wiley & Sons, New York, 1979. 
21. M.E.  BOYCE, A. S. ARGON and D. M. PARKS, Polymer 28 

(1987) 1680. 
22. Y.S. CHOW, J. Polym. Sci. Polym. Phys. Ed. 16 (1978) 959. 
23. J . N .  GOODIER,  J. Appl. Mech. 55 (1933) 39. 
24. T . G .  RICHARD, J. Comp. Mater. 9 (1975) 108. 
25. O. ISHAI and L. COHEN,  J. Compos. Mater. 2 (1968) 302. 
26. T. R I c c O ,  M. RINK, S. CAPORUSSO and A. PAVAN, 

Proc. 2rid Toughening of Plastics, London, 1995. 
27. C. MAESTRINI,  L. MONTI  and H. H. KAUSCH,  Polymer, 

(in press). 

Received 6 March 
and accepted 1 December 1995 

3257 


